
Do complex models increase prediction of complex
behaviours? Predicting driving ability in people with

brain disorders

Carrie R. H. Innes1,2, Dominic Lee3, Chen Chen3, Agate M. Ponder-Sutton3,
Tracy R. Melzer1,4, and Richard D. Jones1,2,4,5,6

1Van der Veer Institute for Parkinson’s and Brain Research, Christchurch, New Zealand
2Department of Medical Physics and Bioengineering, Christchurch Hospital, Christchurch, New Zealand
3Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
4Department of Medicine, University of Otago, Christchurch, New Zealand
5Department of Electrical & Computer Engineering, University of Canterbury, Christchurch, New Zealand
6Department of Psychology, University of Canterbury, Christchurch, New Zealand

Prediction of complex behavioural tasks via relatively simple modelling techniques, such as logistic
regression and discriminant analysis, often has limited success. We hypothesized that to more accu-
rately model complex behaviour, more complex models, such as kernel-based methods, would be
needed. To test this hypothesis, we assessed the value of six modelling approaches for predicting
driving ability based on performance on computerized sensory–motor and cognitive tests
(SMCTestsTM) in 501 people with brain disorders. The models included three models previously
used to predict driving ability (discriminant analysis, DA; binary logistic regression, BLR; and non-
linear causal resource analysis, NCRA) and three kernel methods (support vector machine, SVM;
product kernel density, PK; and kernel product density, KP). At the classification level, two kernel
methods were substantially more accurate at classifying on-road pass or fail (SVM 99.6%, PK
99.8%) than the other models (DA 76%, BLR 78%, NCRA 74%, KP 81%). However, accuracy
decreased substantially for all of the kernel models when cross-validation techniques were used to esti-
mate prediction of on-road pass or fail in an independent referral group (SVM 73–76%, PK 72–73%,
KP 71–72%) but decreased only slightly for DA (74–75%) and BLR (75–76%). Cross-validation of
NCRA was not possible. In conclusion, while kernel-based models are successful at modelling
complex data at a classification level, this is likely to be due to overfitting of the data, which does
not lead to an improvement in accuracy in independent data over and above the accuracy of other
less complex modelling techniques.
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Neurological disorders often affect an individual’s
ability to perform complex tasks. This is a particu-
lar problem when performance is impaired on a
complex task, such as driving, which has the
potential to lead to serious injuries or fatalities
(Hawley, 2001; Hunt, Morris, Edwards, &
Wilson, 1993; Lings & Jensen, 1991; Wood,
Worringham, Kerr, Mallon, & Silburn, 2005).
Thus, it is important that appropriate methods
are available for identifying persons no longer
able to safely perform complex tasks, such as
driving, due to a neurological disorder.

We have developed a comprehensive battery of
computerized sensory–motor and cognitive tests
(SMCTestsTM) as an assessment tool in neurology
and neurorehabilitation (Jones, Donaldson,
Parkin, & Coppage, 1990), with particular appli-
cation to the assessment of driving abilities in
patients with neurological disorders (Heitger
et al., 2004; Innes, Jones, Anderson, Hollobon,
& Dalrymple-Alford, 2009; Innes et al., 2007;
Jones & Donaldson, 1995; Jones, Donaldson, &
Parkin, 1989; Jones, Sharman, Watson, & Muir,
1993; Kondraske, 2006). Our aim is to use an
off-road assessment of cognitive and sensory–
motor functions to predict driving ability and,
thus, avoid unnecessary, subjective, and potentially
highly risky on-road driving assessments.
However, driving is a highly complex task that
we, and others, have had limited success in pre-
dicting based on off-road tests (Dobbs, 2005;
Fischer, Kondraske, & Stewart, 2002; Innes
et al., 2007; Innes, Jones, Dalrymple-Alford, &
Severinsen, 2009; Nouri & Lincoln, 1992, 1993).
For example, in a study of 200 drivers with brain
disorders, we were only able to obtain a classifi-
cation accuracy for pass or fail of 70% using a
binary logistic regression (BLR) or a nonlinear
causal resource analysis (NCRA) model based on
a subset of SMCTests measures (Innes, Jones,
Dalrymple-Alford, et al., 2009). However, we
considered that it might be possible to increase
the predictive accuracy through the use of
complex nonparametric kernel-based modelling
techniques such as support vector machines
(SVM; Burges, 1998; Hsu, Chang, & Lin, 2003)
or classifiers built using kernel product (KP) or

product kernel (PK) estimators (Chen, 2009;
Cooley & MacEachern, 1998; Jebara, Kondor, &
Howard, 2004).

While the classification accuracy of a model
indicates how well the model represents the data
it is modelling, it is crucial to determine how
well a model generalizes to an independent
group. Throughout this paper, “classification” is
used to describe the method of using a single
sample to both train and test a model of
performance. “Prediction” is used to describe the
method of testing a model on an independent
sample or of estimating such through statistical
procedures such as k-fold or leave-one-out cross
validation.

Our aim was to determine whether kernel-
based modelling techniques (SVM, KP, and PK)
could improve the predictive accuracy of
SMCTests-based models over and above the per-
formance of other modelling techniques such as
discriminant analysis (DA), BLR, or NCRA
(Vasta & Kondraske, 1994).

Method

Participants
A consecutive sample of 509 people with brain
disorders were recruited to the study. Data from
8 participants were removed from the final analysis
due to incomplete or missing data, leaving a final
sample of n ¼ 501 (374 males and 127 females).
Study participants had been referred to one of
three driving assessment services based in the
New Zealand cities of Christchurch, Hamilton,
and Wellington. All referrals wished to return to,
or continue, driving despite a medical condition
that might have affected their driving ability.
Referrals for driving assessment were made by
general practitioners, District Health Board prac-
titioners, or the Accident Compensation
Corporation. Referrals were required to be free
from any unrelated diagnosed psychiatric illness
and to have use of their lower limbs. Referrals
either held a current full driver’s licence or had
held one prior to the brain disorder. Ethical
approval for this study was obtained from the
New Zealand Multi Region Ethics Committee.
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Apparatus
Study participants used a steering wheel, indicator
stick, accelerator, and brake pedals to respond to
computer-generated test stimuli displayed on a
screen with a visual angle of +11.3 deg. The
SMCTests program, run by an assessor on a separ-
ate monitor, generated the tests, analysed perform-
ance, stored biographical and test data in a
database, and printed performance summaries.

Sensory – motor and cognitive tests (SMCTests)
The subset of sensory–motor and cognitive tests
(SMCTests) used in this study comprised a visuo-
motor reaction time and speed test (Ballistic
Movement), two visuomotor coordination tests
(Sine Tracking and Random Tracking), a
complex sustained attention test (Complex
Attention), a visual scanning test (Arrows
Perception), a combined visuomotor coordination
and visual scanning test (Divided Attention), and
a visuomotor planning test (Planning). SMCTests
are briefly described below and in detail elsewhere
(Christchurch Neurotechnology Research
Programme, 2006; Heitger et al., 2004; Innes,
Jones, Anderson, et al., 2009; Innes et al., 2007;
Jones, 2006; Jones & Donaldson, 1995; Jones
et al., 1989; Jones et al., 1993).

Ballistic Movement measures the reaction time
and maximum speed at which a participant can
turn the steering wheel to move an arrow out of
a box and across a pass-line in response to an
unpredictable signal (latency 3–7 s).

The two visuomotor coordination tracking
tests, Sine and Random Tracking, measure the
accuracy (mean absolute error) with which a par-
ticipant can track a laterally moving target
(preview of 8 s) using the steering wheel to move
a horizontally moving arrow. The tracking target
is either a sine wave (Sine Tracking) or a random
wave (Random Tracking).

Complex Attention assesses ability to sustain
attention over an extended period of time.
Participants must turn the steering wheel from
left to right repeatedly to maintain an arrow in a
box on the same side of the screen as a green
light symbol is being presented. Variability in

reaction times is analysed to identify lapses in
concentration.

Divided Attention assesses ability to divide
attention between two simultaneously performed
separate activities. Random Tracking is combined
with a simultaneous visual scanning task (Arrows
Perception). While the participant tracks the
random target, consecutive sets of four arrows
are displayed. The participant has to maintain
accurate tracking of the target, while determining
whether the arrows are pointing in the same direc-
tion or not. Subjects were tested separately on
Random Tracking and Arrow Perception in
order to obtain baseline performance on the com-
ponent tasks.

Planning assesses ability to use accurate timing
and judgement as an indicator of planning ability.
The participant is presented with a screen showing
a bird’s eye view of a road and surrounds. When
the participant presses the accelerator, the road
and surrounds scroll down the screen. The blue
car must drive as far as possible in 6 min while
avoiding all hazards.

On-road assessment
An on-road assessment provided the criterion
measure (“gold standard”) of driving ability.
Performance during the on-road assessment was
evaluated by an occupational therapist and an
independent driving instructor. The occupational
therapist knew the age and reason for referral for
all participants. However, both the occupational
therapist and driving instructor were blinded to
performance on SMCTests. The driving instructor
was seated in the front passenger seat and was
responsible for giving directions to the subject
and for maintaining the safety of the vehicle.
The occupational therapist, experienced in
driving assessment and rehabilitation of persons
with brain disorders and/or disabilities, was
seated in the rear of the car.

All assessments began with the subject’s ability
to control the initial starting and stopping of the
vehicle being assessed. Subjects were then asked
to drive to a residential suburb that experiences
little traffic during the day but includes controlled
(give-way and stop-sign controlled) and
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uncontrolled intersections. Subjects were then
asked to drive in increasingly busy and complicated
traffic situations. Traffic hazards included single-
lane roundabouts, dual-lane roundabouts, dual-
lane roads, controlled intersections (give-way,
stop-sign, and traffic-light controlled), uncon-
trolled intersections, and changes in speed zone
(i.e., 50 km/hr, 60 km/hr, and 80 km/hr sec-
tions). Assessments were approximately 45 min
in duration. However, if the occupational therapist
or driving instructor considered that their safety or
the safety of the vehicle or other road users was at
risk at any stage during the assessment, the assess-
ment was terminated, and the driving instructor
drove the vehicle back to the starting point.

On-road driving performance was scored as a
pass or a fail. Assessment was defined by four
areas of driving deemed necessary for safe and
able driving: search, hazard identification, con-
trols, and observation of traffic regulations, each
subdivided into specific components. Driving per-
formance was also scored using a driving scale
(outlined in Innes et al., 2007). A driving score
was determined by mutual agreement by the two
assessors. If a subject failed the on-road assess-
ment, they were given a driving score of 0–5.
Subjects who passed were given a driving score
of 6–10. Exact scores were defined by the
number of observed driving errors, whether these
were considered major or minor, and whether
the participant was able to subsequently correct
errors. A copy of the driving scale is available
at www.neurotech.org.nz/files/Driving_Scale.pdf
(Innes & Jones, n.d.).

Data analysis
As none of the SMCTests data were normally dis-
tributed (Shapiro–Wilk W test and Lilliefors
probabilities, p , .05), and several measures were
ordinal, nonparametric techniques were used to
analyse the data at group level. Mann–Whitney
U analysis was undertaken to determine significant
differences in off-road test performance between
the referrals who passed the on-road assessment
and those who failed. The Cohen-type effect size
statistic for rank-transformed variables (Hopkins,

2000) was used to evaluate the magnitude of
differences in off-road performance between the
pass and fail referral groups.

The subset of seven SMCTests provided 24 key
measures. However, to prevent problems with colli-
nearity, intercorrelations between test measures were
calculated to identify test measures showing a low
tolerance (,.2), which indicates multicollinearity
of that variable with other variables, or that were
highly correlated (r ≥ .80) with another measure.

Five nonparametric modelling techniques were
used to determine the classification and predictive
value of performance on SMCTests for on-road
driving ability at the individual level for refer-
rals—binary logistic regression, nonlinear causal
resource analysis, and three kernel methods
(product kernel density, kernel product density,
and support vector machine). In addition, a
common parametric modelling technique, discri-
minant analysis, was used for comparison.

Discriminant analysis (DA) is a parametric
classification technique used to classify input data
into two or more mutually exclusive groups. DA
works on the same principle as a multivariate
analysis of variance, where, based on a matrix of
variances and covariances, variables are assessed
to determine whether they discriminate between
groups (i.e., whether the mean of a variable
differs between groups; StatSoft, 2003). A back-
ward stepwise method was used with our data to
select the optimal set of SMCTests variables for
discriminating between the on-road assessment
fail and pass groups. Amongst other consider-
ations, DA assumes that the data form part of a
normal distribution. It is important to note that
the number of variables offered to the model
must follow the rule of thumb that there be at
least 5, if not 10 times, as many cases as indepen-
dent variables in a regression analysis to minimize
the risk of overfitting the model to the sample
(Hosmer & Lemeshow, 2000; Peduzzi, Concato,
Kemper, Holford, & Feinstein, 1996;
Tabachnick & Fidell, 2001). This rule must be
applied prior to implementation of the stepwise
regression. In the current study, enough data
were obtained to apply a conservative 1:20 ratio
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of independent variables to participants prior to
the stepwise regression.

Binary logistic regression (BLR) is a nonpara-
metric classification method for the case where
the dependent variable is dichotomous (i.e., pass
or fail on an on-road driving assessment). BLR
was used to estimate the probability of an on-
road assessment fail based on an exponential func-
tion of SMCTests variables and weightings. As
with DA, a backward stepwise method was used
to select the optimal set of SMCTests variables
for predicting on-road assessment outcome.
Variables that explain a significant amount of the
variance in the dependent variable are weighted
along with the other entered variables to form an
equation of best fit. The model uses a stepwise
elimination procedure to remove variables that
do not explain a significant amount of variance
in the dependent measure. As with DA, a conser-
vative ratio of one independent variable to 20 cases
was applied prior to implementation of the BLR
stepwise regression. In contrast to DA, BLR
makes no assumptions about the distributions of
the variables and can use categorical, ordinal, and
interval data.

Nonlinear causal resource analysis (NCRA) is a
performance prediction method based on the
resource economic performance modelling con-
structs of general systems performance theory
and the elemental resource model (Kondraske,
2006). With NCRA, the minimum resource
level required to achieve a given level of perform-
ance on a high-level task is determined for each
test function and is plotted as a resource demand
function (RDF) curve (Fischer et al., 2002;
Kondraske, 2006). RDF curves were created for
key performance measures from each of the
SMCTests tests. A major benefit of NCRA is
that it can then determine the specific test function
that maximally limited each subject’s performance
on the high-level driving task. NCRA-predicted
scores for each referral were compared with
observed Driving Scale scores (0–10) in order to
determine the accuracy of the NCRA model pre-
dictions. For classification purposes, Driving
Scale scores ,6 were classified as fail while
scores ≥6 were classified as pass.

Kernel-based classification methods can be
used to solve nonlinear problems by mapping non-
linear observations into a higher dimensional space
where a linear or nonlinear classifier can then be
used—this is known as the Kernel Trick, which
is based on theories developed by Vapnik (1998).
Two of the kernel-based classification approaches
used with our data involved modelling the prob-
ability density function for each group (i.e., pass
or fail on an on-road driving assessment) for
each test measure (Parzen, 1962), then using the
Bayes classifier to estimate the probability that an
observation came from the pass or fail group.
While several density estimation techniques
could be used, two nonparametric density estima-
tors were implemented: product kernel density
estimator (PK) and kernel product density estima-
tor (KP; Chen, 2009; Cooley & MacEachern,
1998; Jebara et al., 2004). As KP makes a stronger
assumption than PK that the features (i.e., test
measures) are independent, KP may not be as suit-
able for representing data that have a strong
dependence between feature variables.

Finally, a sparse kernel machine (support vector
machine, SVM) approach to classification was
implemented. SVM is a classification method that
uses hyperplanes in multidimensional space to
maximally separate data into defined categories
(i.e., pass or fail on an on-road driving assessment).
The margin of the separating hyperplane is the dis-
tance from the hyperplane to the nearest data point
of either category. The data points that lie along the
margins of the separating hyperplanes are called the
support vectors. When data are not completely
separable, an extra cost is assigned within the
equation for errors. Our data were modelled using
a nonlinear radial basis function kernel. See Hsu
et al. (2003) for a practical guide to support vector
classification or Burges (1998) for a more detailed
description of the underlying theory behind SVM.

Leave-one-out was used to estimate the true
error rate of the models in an independent test
set. In leave-one-out cross-validation, each case
is left out in turn while the remaining data are
used to train the model; the model is then
tested on the single case that was left out
(Witton & Frank, 1999). This method has the
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advantage that the greatest possible amount of
data can be used to train each model. If the popu-
lation in the training set is representative of the
population that the predictive model will be used
with, cross-validation provides a sound estimate
of the predictive accuracy that would be achieved
with a separate test dataset (Witton & Frank,
1999). In addition, the results of the leave-one-
out cross-validation were compared to the results
of a repeated stratified 10-fold cross-validation.
Ten-fold cross-validation is similar to leave-one-
out except instead of leaving one case out, the
data are split into 10 groups (stratified for pro-
portion of pass and fail), and each group is left
out in turn while the remaining 90% of data are
used to train the model; the model is then tested
on the 10% of data that were left out. The 10-
fold cross-validation was repeated 100 times by
using a random number generator to sort and
split the data into 10 different groups before
repeating the training and testing. Unfortunately,
there is no method for automated 10-fold or
leave-one-out cross-validation of the NCRA
model, and, thus, the predictive accuracy of the
NCRA model could not be estimated.

DA and BLR both employ a backward stepwise
method for variable selection, which has been
shown in our earlier data to increase the generaliz-
ability of the model to independent data, compared
to an Enter model (personal communication),
presumably by minimizing overfitting. However,
the kernel methods do not have an in-built
method for variable selection. Thus, two model-
independent methods for ranking the importance
of variables were used to identify a reduced set of
10 SMCTests variables in order to assess the
impact of a reduced number of input variables on
KP, PK, and SVM model classification and
prediction accuracy. The first reduced set of vari-
ables was selected by identifying the 10 SMCTests
variables with the largest Cohen-type effect size
statistic for rank-transformed variables for separ-
ating pass and fail groups. The second reduced set
of variables was selected by performing receiver-
operating characteristic (ROC) curve analysis on
each predictor and using the area under the curve
to identify the top 10 ranked variables.

The performance of the six modelling tech-
niques for classification and prediction of driving
assessment outcome was assessed based on the
area under the ROC curve (ROC AUC), accuracy,
sensitivity (% detection of on-road assessment
fails), specificity (% detection of on-road assess-
ment passes), positive predictive value (PPV),
and negative predictive value (NPV). PPV (also
known as the “predictive value of a positive test”,
PV+) provides a measure of the proportion of
referrals predicted to fail who did fail. NPV (also
known as the “predictive value of a negative
test”, PV–) provides a measure of the proportion
of referrals predicted to pass who did pass.
Comparison of ROC curves to test the statistical
significance of the difference between the areas
was undertaken using the method of DeLong,
DeLong, and Clarke-Pearson (1988; MedCalc
Software 11.3.1).

Results

All 501 referrals recruited to the study had a defi-
nite or suspected brain disorder as follows: 163
suspected or probable dementia, 153 stroke, 113
traumatic brain injury, 27 Parkinson’s disease, 9
brain tumours, and 36 other neurological dis-
orders. Referrals had a mean age of 66.3 years
(SD 18.9, range 17–92).

Of the 501 referrals, 207 (41%) failed the on-
road driving assessment, and 294 (59%) passed.
A total of 50% of fails (n ¼ 103) had their on-
road assessment terminated early due to serious
safety concerns. A total of 6% of failed on-road
assessments (n ¼ 12) were terminated within 20
min, 26% (n ¼ 54) between 20–30 min, and
18% (n ¼ 37) between 30–40 min.

Mann–Whitney U analysis showed that there
were differences in off-road test performance
between the group of referrals who passed the
on-road assessment and those who failed on each
of the 24 key SMCTests measures (Table 1).
Cohen-type effect sizes of the difference between
pass and fail groups were all significant (p , .05)
and ranged from 0.37–1.20. Cohen-type effect
sizes were highest for measures of visuomotor
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coordination, divided attention, and sustained
attention.

Referrals who failed the on-road assessment
were older than those who passed (median 79
years vs. 63 years, Mann–Whitney U ¼ 15,193,
p , .001).

Due to the large data set obtained for this study,
all key SMCTests measures could be included in
the analysis while still maintaining a conservative
1:20 ratio of independent variables to participants.
However, to avoid problems with collinearity, 5 of
the 24 key measures were removed from the classi-
fication analysis due to low tolerance (,0.2) or
intercorrelation (r ≥ .80) with other measures.
Measures removed were Ballistic Movement
peak velocity, Random Tracking absolute mean

error Run 2, Sine Tracking absolute mean error
Run 2, Arrows Perception number of correct
trials, and Divided Attention Arrows Perception
number of correct trials.

The 19 SMCTests measures plus age were
offered to the backward stepwise DA analysis,
which produced a model with five measures—
Divided Attention Tracking mean absolute error,
Complex Attention reaction time, Age, Planning
intersection safety margin, and Planning hazards
hit. The area under the ROC curve (ROC
AUC) of the DA model was 0.84. Based on the
ROC curve, the optimal cut-point for the model
that gave the highest mean sensitivity and speci-
ficity was determined to be 0.45. Based on the
optimized cut-point, the DA model correctly

Table 1. SMCTests performance difference between the on-road assessment pass and fail groups based on Mann–Whitney U analysis

SMCTests measure
Pass referrals (n ¼ 294)

Median
Fail referrals (n ¼ 207)

Median
Effect size of pass vs.

faila

Random Tracking: mean error (mm) Run 2 7.5 14.3 1.20
Divided Attention: tracking mean error

(mm)
8.3 14.5 1.15

Complex Attention: reaction time (ms) 495 689 1.09
Sine Tracking: mean error (mm) Run 2 10.0 16.4 1.05
Random Tracking: mean error (mm) Run 1 7.8 14.4 1.04
Planning: duration of lateral position errors

(s)
4.7 13.8 1.04

Ballistic Movement: reaction time (ms) 369 459 0.99
Sine Tracking: mean error (mm) Run 1 14.2 21.7 0.94
Complex Attention: movement time (ms) 346 465 0.94
Planning: safety margin at intersections

(mm)
39.0 23.0 0.85

Complex Attention: movement time SD
(ms)

54 97 0.80

Divided Attention: nonresponses 0.0 0.0 0.80
Ballistic Movement: peak velocity (mm/s) 805 666 0.79
Ballistic Movement: movement time (ms) 263 319 0.78
Planning: hazards hit 1.0 3.0 0.77
Complex Attention: reaction time SD (ms) 139 269 0.74
Complex Attention: lapses 0.0 1.0 0.72
Planning: crashes with other vehicles 0.0 1.0 0.69
Divided Attention: arrows correct 12.0 11.0 0.63
Complex Attention: invalid trials 0.0 0.0 0.60
Arrows Perception: nonresponses 0.0 0.0 0.49
Planning: lateral position error (mm) 2.9 3.2 0.46
Planning: distance travelled (m) 4.0 3.6 0.43
Arrows Perception: arrows correct 12.0 12.0 0.37

aEffect size calculated using a Cohen-type effect-size statistic for rank-transformed variables (Hopkins, 2000); p , .05.
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classified 380 of the 501 referrals (i.e., 76% accu-
racy) as an on-road pass or fail.

The backward stepwise BLR analysis produced
a model with eight measures—Divided Attention
Tracking mean absolute error, Divided Attention
Arrows Perception nonresponses, Complex
Attention reaction time, Complex Attention
number of invalid trials, Planning duration of
lateral position faults, Planning number of
hazards hit, Planning intersection safety margin,
and age. The ROC AUC of the BLR model was
0.84. Based on an optimized cut-point of 0.44,
the BLR model correctly classified 389 of the
501 referrals (i.e., 78% accuracy) as an on-road
pass or fail.

NCRA produced resource demand function
curves for the 20 measures to model the data.
The ROC AUC of the NCRA model was 0.80.
Based on an optimized RDF curve-predicted
driving scale score of less than 7.8 being fail, the
model correctly classified 371 of the 501 referrals
(i.e., 74% accuracy).

The ROC AUC of the PK model was 0.99.
Based on an optimized cut-point of 0.41, the PK
model used all 20 measures to correctly classify
500 of the 501 referrals (i.e., 99.8% accuracy).

The ROC AUC of the KP model was 0.87.
Based on an optimized cut-point of 0.69, the KP
model used all 20 measures to correctly classify
407 of the 501 referrals (i.e., 81% accuracy).

The ROC AUC of the SVM model was 0.98.
Based on an optimized cut-point of 0.48, the
SVM model used all 20 measures to correctly
classify 499 of the 501 referrals (i.e., 99.6% accuracy).

Compared to a default cut-point of 0.50, using
an optimized cut-point only improved the accu-
racy of the DA, BLR, KP, PK, and SVM classifi-
cation models by 1%. However, an optimized cut-
point improved the classification accuracy of the
NCRA model from 66% to 74%.

Based on the optimized cut-points determined
by the classification model ROC curve analysis,
leave-one-out cross-validation analysis estimated
that the five models would correctly predict
72–76% of an independent test set to pass or fail
an on-road assessment (DA 75%, BLR 76%, PK
73%, KP 72%, SVM 76%). The accuracy of the

leave-one-out prediction models was the same
whether optimized cut-points or the default cut-
point of 0.50 were used. Stratified 10-fold cross-
validation with 100 repeats gave very similar but
slightly lower estimated accuracies for the five
models (DA 74%, BLR 75%, PK 72%, KP 71%,
SVM 73%) than leave-one-out cross-validation
and at a much higher computational cost.

The 10 variables with the largest Cohen-type
effect sizes were used as a reduced set of input vari-
ables for the PK, KP, and SVM models. With this
reduced set of input variables, the classification
accuracy of the PK model remained unchanged
(PK 99.8%). However, there was reduced classifi-
cation accuracy in the remaining models (KP
77%, SVM 89%), as well as reduced leave-one-
out cross-validation accuracy across all three
models (PK 70%, KP 71%, SVM 72%). The 10
variables with the largest ROC AUCs were used
as a second reduced set of input variables. With
this reduced set of input variables, the classification
accuracy of the PK model remained unchanged
(PK 99.8%) while the accuracy of the other
models was reduced (KP 76%, SVM 97%).
Leave-one-out cross-validation accuracy was also
reduced across all three models (PK 66%, KP
68%, SVM 72%).

A summary of the classification and prediction
performance of the models, in terms of ROC
AUC, sensitivity, specificity, NPV, PPV, and
overall accuracy, is provided in Table 2. The com-
parative discrimination of the models for dis-
tinguishing between those who pass or fail the
on-road driving assessment was assessed by
testing the statistical significance of the difference
between the areas under the ROC curves (DeLong
et al., 1988). The discrimination of the SVM and
PK models was superior to the other models at the
classification level (p , .001). However, at the
prediction level, the discrimination of SVM was
not different to that of any of the other
models. The BLR model was superior to PK and
KP (p , .001) but not different to SVM or DA.
DA was superior to KP (p ¼ .041) but not differ-
ent to any other model.

There was no difference in the mean ages of
female or male referrals. However, females were
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more likely to fail the on-road driving assessment
than males (50% females vs. 39% males failed),
x2(1) ¼ 4.82, p ¼ .028. On average, the males
had higher upper-limb peak velocities, had more
accurate visuomotor tracking, had faster reaction
and movement times on a complex sustained
attention task, spent less time off-road, and had
greater safety margins leading to fewer crashes
with hazards and other vehicles in Planning. The
male performance advantage was observed across
more test measures than had been observed in pre-
vious studies in normal subjects (Innes, Jones,
Anderson, et al., 2009). This notwithstanding,
the Cohen-type effect sizes of the differences
were generally small to moderate (0.24–0.65),
and the addition of sex as a variable did not
improve the accuracy of the classification models.

Referrals with suspected or probable dementia
were more likely to fail the on-road driving
assessment than those referred with other brain
disorders (58% vs. 33% failed), x2(1) ¼ 28.68,
p , .001. There was no difference in brain
disorder type between males and females.
However, the referrals with suspected or probable
dementia were older than the referrals with other
brain disorders (median 80 years vs. 63 years,

Mann–Whitney U ¼ 11,932, p , .001). The
addition of brain disorder type as a variable did
not improve the accuracy of any of the classifi-
cation models.

Discussion

As driving is a very complex behaviour, we had
hypothesized that more complex models may
provide more accurate prediction of driving
ability in people with brain disorders over and
above previously used simpler modelling tech-
niques such as binary logistic regression.
However, while two of the kernel-based modelling
methods (SVM and PK) were very accurate at
modelling on-road driving outcome at a classifi-
cation level, the kernel-based modelling methods
were not more accurate than the other modelling
techniques when leave-one-out cross-validation
was used to estimate how well the models would
generalize to independent test data. It is likely
that the degrees of freedom that give the kernel-
based models their strength probably led to sub-
stantial overfitting of the data.

By identifying hyperplanes that separate the
data with the maximum margin, SVM models

Table 2. Performance of models for classification and prediction of on-road driving based on SMCTests performance and age and using
optimized cut-points

ROC AUC
(95% CI) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

Classification PK 0.99 (0.99–1.00) 99.5 100.0 100.0 99.7 99.8
SVM 0.98 (0.96–1.00) 99.5 99.7 99.5 99.7 99.6
KP 0.87 (0.84–0.91) 64.7 92.9 86.5 78.9 81.2
BLR 0.84 (0.81–0.88) 72.9 81.0 72.9 81.0 77.6
DA 0.84 (0.80–0.87) 78.7 73.8 67.9 83.1 75.8
NCRA 0.80 (0.76–0.84) 69.1 77.6 68.4 78.1 74.1

Leave-one-out
cross-validation

PK 0.78 (0.74–0.82) 66.7 77.9 68.0 76.8 73.3

SVM 0.82 (0.79–0.86) 74.4 76.9 69.4 81.0 75.8
KP 0.77 (0.72–0.81) 57.5 81.6 68.8 73.2 71.7
BLR 0.83 (0.79–0.86) 69.1 81.0 71.9 78.8 76.0
DA 0.83 (0.79–0.86) 76.8 72.8 66.5 81.7 74.5

Note: ROC AUC ¼ receiver-operating characteristic curve, area under the curve. CI ¼ confidence interval. PPV ¼ positive
predictive value. NPV ¼ negative predictive value. PK ¼ product kernel density estimator. SVM ¼ support vector machine.
KP ¼ kernel product density estimator. BLR ¼ binary logistic regression. DA ¼ discriminant analysis. NCRA ¼ nonlinear
causal resource analysis.
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are designed to minimize structural risk. In basic
terms, structural risk is the trade-off between
empirical risk (i.e., measured mean error rate on
the training set, which can vary depending on
underfitting or overfitting the data) and actual
risk (i.e., true mean error in an independent set;
Burges, 1998). However, while SVM models are
expected to be somewhat resilient to the problem
of overfitting (Vapnik, 1999), our data show that
the SVM classification model did not generalize
well. Two model-independent methods for
ranking the importance of variables were used to
identify a reduced set of 10 SMCTests variables
and to assess whether a reduced number of input
variables might reduce any overfitting in the KP,
PK, and SVM model classification models and
thereby increase the generalization of the models
for prediction. However, the models based on a
reduced set of input variables resulted in
unchanged or reduced classification and prediction
accuracy. This indicates that reducing the number
of explanatory variables available did not improve
predictive accuracy via a reduction in overfitting
in the classification models.

A recent paper reported that a repeated 10-fold
cross-validation estimator may be the best method
for estimating the accuracy of a classification
model when an independent test set was not avail-
able (Kim, 2009). Overall, we found that 10-fold
cross-validation with 100 repeats gave an almost
identical range of estimated accuracies for the
five models compared to leave-one-out cross-
validation.

In addition to the overall accuracy of the
models, the positive and negative predictive
values also give important information about
model performance. It is important that a driver
screening assessment does not lead to a high pro-
portion of people required to undergo unnecessary
further assessment but who ultimately are assessed
as safe to drive. The leave-one-out cross-validated
model PPVs ranged from 67–72%, which indi-
cates that, if used as a screening tool in an indepen-
dent group of referrals, 28–33% of people
predicted to fail would ultimately pass an on-
road assessment. This may be a reasonable pro-
portion of false positives if at the same time the

model is able to identify the people who are truly
unsafe to continue driving. However, the leave-
one-out cross-validated model NPVs ranged
from 73–82%, which indicates that 18–27% of
people predicted to pass would actually fail the
on-road assessment. Thus, if used as a screening
tool without further assessment, this would mean
than 18–27% of people allowed to return to
driving would actually be unsafe drivers.

This study highlights the danger of relying on
classification accuracy to compare models and
emphasizes the need to assess the generalizability
of a model in an independent data set or via
cross-validation. This conclusion is supported by
extensive previous work in statistics and machine
learning, where it has been shown mathematically
that the empirical classification accuracy is, on
average, an overestimate of the generalization
accuracy (Kohavi, 1995; Picard & Cook, 1984).

We have determined that, for this type of data,
the estimated discrimination of the relatively
simple BLR model is approximately the same as
that of the DA and the more complex SVM
models and is superior to that of the other more
complex KP and PK models. Furthermore, leave-
one-out cross-validation of model performance
indicates that, irrespective of the complexity of
the model, none of the models is accurate
enough to be used as a complete screening tool
without need for further assessment to determine
driving safety.

Original manuscript received 30 September 2010
Accepted revision received 10 January 2011

First published online 26 April 2011

REFERENCES

Burges, C. J. C. (1998). A tutorial on support vector
machines for pattern recognition. Data Mining and
Knowledge Discovery, 2, 121–167.

Chen, C. (2009). Classification via product kernel and
kernel product density estimators with application for
predicting driving ability of persons with brain
disorders. Unpublished BSc (Hons) thesis, University
of Canterbury, Christchurch, New Zealand.

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2011, 64 (9) 1723

MODELS FOR PREDICTING COMPLEX BEHAVIOUR

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f O

ta
go

] a
t 2

1:
27

 2
0 

Se
pt

em
be

r 2
01

1 



Christchurch Neurotechnology Research Programme
(2006). Canterbury Driving Assessment Tool
(CanDATTM) incorporating SMCTestsTM Version
5.0—user’s manual. Christchurch, New Zealand:
Canterbury District Health Board.

Cooley, C. A., & MacEachern, S. N. (1998).
Classification via kernel product estimators.
Biometrika, 85, 823–833.

DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L.
(1988). Comparing the areas under two or more corre-
lated receiver operating characteristic curves: A non-
parametric approach. Biometrics, 44, 837–845.

Dobbs, A. R. (2005, June). The development of a scien-
tifically based driving assessment and standardization
procedures for evaluating medically at-risk drivers.
Paper presented at the Proceedings of the Canadian
Multidisciplinary Road Safety Conference XV.
Fredericton, New Brunswick, Canada.

Fischer, C. A., Kondraske, G. V., & Stewart, R. M.
(2002, October). Prediction of driving performance
using nonlinear causal resource analysis. Proceedings
of the Second Joint Engineering in Medicine and
Biology Society/Biomedical Engineering Society
Conference, 2, Houston, TX, USA, pp. 2473–2474.

Hawley, C. A. (2001). Return to driving after head
injury. Journal of Neurology, Neurosurgery, and
Psychiatry, 70, 761–766.

Heitger, M. H., Anderson, T. J., Jones, R. D.,
Dalrymple-Alford, J. C., Frampton, C. M., &
Ardagh, M. W. (2004). Eye movement and visuo-
motor arm movement deficits following mild closed
head injury. Brain, 127, 575–590.

Hopkins, W. G. (2000). A new view of statistics. Internet
Society for Sport Science. Retrieved 16 August,
2004, from www.sportsci.org/resource/stats/

Hosmer, D., & Lemeshow, S. (2000). Applied logistic
regression (2nd ed.). New York, NY: Wiley & Sons.

Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A prac-
tical guide to support vector classification. Retrieved 3
April, 2010, from www.csie.ntu.edu.tw/~cjlin/
papers/guide/guide.pdf

Hunt, L., Morris, J. C., Edwards, D., & Wilson, B. S.
(1993). Driving performance in persons with mild
senile dementia of the Alzheimer type. Journal of
the American Geriatrics Society, 41, 747–752.

Innes, C. R. H., & Jones, R. D. (n.d.). Driving Scale.
Retrieved June 21, 2009, from http://www.
neurotech.org.nz/files/Driving_Scale.pdf

Innes, C. R. H., Jones, R. D., Anderson, T. J.,
Hollobon, S. G., & Dalrymple-Alford, J. C.
(2009). Performance in normal subjects on a novel

battery of driving-related sensory-motor and cogni-
tive tests. Behavior Research Methods, 42, 284–294.

Innes, C. R. H., Jones, R. D., Dalrymple-Alford, J. C.,
Hayes, S., Hollobon, S., Severinsen, J., et al. (2007).
Sensory-motor and cognitive tests predict driving
ability of persons with brain disorders. Journal of the
Neurological Sciences, 260, 188–198.

Innes, C. R. H., Jones, R. D., Dalrymple-Alford, J. C.,
& Severinsen, J. (2009, June). Prediction of driving
ability in people with dementia- and non-demen-
tia-related brain disorders. Proceedings of the
International Driving Symposium on Human Factors
in Driver Assessment, Training, and Vehicle Design.
Big Sky, MT, USA, pp. 342–348.

Jebara, T., Kondor, R., & Howard, A. (2004).
Probability product kernels. Journal of Machine
Learning Research, 5, 819–844.

Jones, R. D. (2006). Measurement of sensory-motor
control performance capacities: Tracking tasks. In J.
D. Bronzino (Ed.), The biomedical engineering hand-
book: Biomedical engineering fundamentals (3rd ed.,
Vol. 1, pp. 77:1–77:25). Boca Raton, FL: CRC Press.

Jones, R. D., & Donaldson, I. M. (1995). Fractionation
of visuoperceptual dysfunction in Parkinson’s
disease. Journal of the Neurological Sciences, 131, 43–50.

Jones, R. D., Donaldson, I. M., & Parkin, P. J. (1989).
Impairment and recovery of ipsilateral sensory-motor
function following unilateral cerebral infarction.
Brain, 112, 113–132.

Jones, R. D., Donaldson, I. M., Parkin, P. J., &
Coppage, S. A. (1990). Impairment and recovery
profiles of sensory-motor function following stroke:
Single-case graphical analysis techniques.
International Disability Studies, 12, 141–148.

Jones, R. D., Sharman, N. B., Watson, R. W., & Muir,
S. R. (1993). A PC-based battery of tests for quanti-
tative assessment of upper-limb sensory-motor func-
tion in brain disorders. Proceedings of 15th
International Conference of IEEE Engineering in
Medicine and Biology Society, 15, 1414–1415.

Kim, J.-H. (2009). Estimating classification error rate:
Repeated cross-validation, repeated hold-out and
bootstrap. Computational Statistics & Data Analysis,
53, 3735–3745.

Kohavi, R. (1995). A study of cross-validation and boot-
strap for accuracy estimation and model selection.
Proceedings of the 14th International Joint Conference
on Artificial Intelligence, 2, 1137–1143.

Kondraske, G. V. (2006). The elemental resource model
for human performance. In J.D. Bronzino (Ed.),
The biomedical engineering handbook: Biomedical

1724 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2011, 64 (9)

INNES ET AL.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f O

ta
go

] a
t 2

1:
27

 2
0 

Se
pt

em
be

r 2
01

1 



engineering fundamentals (3rd ed., pp. 75:01–75:19).
Boca Raton, FL: CRC Press.

Lings, S., & Jensen, P. B. (1991). Driving after stroke: A
controlled laboratory investigation. International
Disability Studies, 13, 74–82.

Nouri, F. M., & Lincoln, N. B. (1992). Validation of a
cognitive assessment: Predicting driving perform-
ance after stroke. Clinical Rehabilitation, 6, 275–281.

Nouri, F. M., & Lincoln, N. B. (1993). Predicting
driving performance after stroke. British Medical
Journal, 307, 482–483.

Parzen, E. (1962). On estimation of a probability
density function and mode. Annals of Mathematical
Statistics, 33, 1065–1076.

Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., &
Feinstein, A. R. (1996). A simulation of the
number of events per variable in logistic regression
analysis. Journal of Clinical Epidemiology, 99,
1373–1379.

Picard, R. R., & Cook, R. D. (1984). Cross-validation
of regression models. Journal of the American
Statistical Association, 79, 575–583.

StatSoft (2003). StatSoft textbook. Retrieved, April 19,
2010, from www.statsoft.com/textbook/stathome.html

Tabachnick, B. G., & Fidell, L. S. (2001). Using
multivariate statistics (4th ed.). New York, NY:
HarperCollins.

Vapnik, V. N. (1998). Statistical learning theory.
New York, NY: John Wiley & Sons.

Vapnik, V. N. (1999). An overview of statistical learning
theory. IEEE Transactions on Neural Networks, 10,
988–999.

Vasta, P. J., & Kondraske, G. V. (1994, November).
Performance prediction of an upper extremity reci-
procal task using non-linear causal resource analysis.
Proceedings of International Conference of IEEE
Engineering in Medicine and Biology Society,
Baltimore, MD, USA, pp. 305–306.

Witten, I. H., & Frank, E. (1999). Data mining.
San Francisco, CA: Morgan Kaufmann.

Wood, J. M., Worringham, C., Kerr, G., Mallon, K., &
Silburn, P. (2005). Quantitative assessment of driving
performance in Parkinson’s disease. Journal of
Neurology, Neurosurgery, and Psychiatry, 76, 176–180.

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2011, 64 (9) 1725

MODELS FOR PREDICTING COMPLEX BEHAVIOUR

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f O

ta
go

] a
t 2

1:
27

 2
0 

Se
pt

em
be

r 2
01

1 


